Using Mutual Information for Global Sensitivity Analysis on Watershed Modeling

نویسندگان

چکیده

Abstract Global sensitivity analysis (GSA) often is applied to assess the of model outputs their inputs using ensemble simulations. However, increasing complexity and associated computational cost have limited use most GSA approaches for process‐based watershed models. We propose mutual information (MI) as a computationally efficient method modeling. Such MI computed from several hundred realizations usually can capture nonlinear relationships between interest. perform MI‐based analyses in studies Portage River Watershed Ohio American Washington. In these studies, used evaluate river discharges simulated by Soil Water Assessment Tool no less than 20 SWAT parameters each watershed. Our achieved convergence with about 300–500 realizations, small fraction size (i.e., thousands) required Sobol method. Nevertheless, two‐dimensional yields similar ranking compared Sobol's total‐order indices, especially sensitive parameters. study thus sheds new light on an affordable intensive models such hyperresolution, hydrobiogeochemical

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis for Urban Drainage Modeling Using Mutual Information

The intention of this paper is to evaluate the sensitivity of the Storm Water Management Model (SWMM) output to its input parameters. A global parameter sensitivity analysis is conducted in order to determine which parameters mostly affect the model simulation results. Two different methods of sensitivity analysis are applied in this study. The first one is the partial rank correlation coeffici...

متن کامل

Multiobjective sensitivity analysis to understand the information content in streamflow observations for distributed watershed modeling

[1] In a previous paper, van Werkhoven et al. (2008b) demonstrated that the information content of streamflow observations at a watershed outlet is a dynamic entity and is dependent on the spatiotemporal dynamics of the causal precipitation event. This result has important consequences for distributed hydrological model calibration strategies and for the design of observation networks. However,...

متن کامل

Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sens...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Distributed Hydrological Modeling and Sensitivity Analysis in Torysa Watershed, Slovakia

The spatially distributed hydrologic model WetSpa is applied to the Torysa river basin (1,297 km) located in Slovakia. Daily hydrometeorological data from 1991 to 2000 are used as input to the model. The spatial characteristic of the basin are described by three base maps, i.e. DEM, landuse and soil type, in GIS form using 100 m cell size. Results of the simulations show a good agreement betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water Resources Research

سال: 2022

ISSN: ['0043-1397', '1944-7973']

DOI: https://doi.org/10.1029/2022wr032932